Breakthroughs

Experience. Explore. Discover. Achieve. And Now: Steward.

  • Welcome to Breakthroughs

    Hello! Welcome to Breakthroughs, a site devoted to sharing with you the latest, greatest advancements from the College of Science at Oregon State University. From breakthroughs in research to transformational philanthropy to interesting tidbits from the daily life of the College, we'll post frequently to keep you up-to-date. Please visit often and absolutely let us know what you might like to learn more about. Enjoy, and of course, GO BEAVS!
  • Subscribe

  • Archives

  • blog stats
  • Top Posts

Archive for January, 2008

Note to Oregon: Lessons learned from Banda Aceh

Posted by The College of Science at OSU on January 20, 2008

ruggieroBeaches Ravaged by Tsunami Still Eroding

By David Stauth, 541-737-0787

Contact: Peter Ruggiero, 541-737-1239

CORVALLIS, Ore. – The catastrophic damage of the 2004 Indian Ocean earthquake was mostly done within a few hours, but that was just the beginning of a different process that may take up to a decade or more to complete – the stabilization of new beaches and landforms in areas ravaged by this disaster.

In continued studies, researchers at Oregon State University and the U.S. Geological Survey are finding that the beaches may continue to shift and change for several more years, as the lands adjust both to the tsunami impacts and the sudden drop of some nearby land by three to six feet.

Meanwhile, some roads constructed in the push for recovery after the disaster already are being threatened by eroding beaches and lapping water. Houses have been rebuilt on stilts in areas that properly should now be considered ocean, not land. And beach experts are closely studying this process – not only to learn more, but to make sure that when the Pacific Northwest tries some day to recover from its own massive tsunami, the decisions will be informed by good science.

beacherosionsm“In Banda Aceh, the city most severely hit by the tsunami, some people are using fill, raised roadbeds and stilts to build their homes in what is essentially an intertidal zone,” said Peter Ruggiero, an OSU assistant professor of geosciences. “It’s amazing the energy they are putting into this, but it is apparent that much of this land may just disappear. You can see palm trees in the ocean, on what used to be dry land. Right now some areas look like a little Venice.

“And with some regularity, when we were looking at a new highway in Indonesia that already needs rip-rap to prevent the ocean from claiming it, I was visualizing Highway 101 on the Oregon Coast,” Ruggiero said. “Our input may be too late to help the Indonesians in their recovery from this disaster, but hopefully we may learn a lot here that will some day help the U.S. recover from the tsunami in our future.”

There’s little realization, Ruggiero said, that after a tectonic and geologic event the magnitude of the one in Indonesia, the ocean will take years to adjust to a new equilibrium, one in which shorelines are largely stable and neither eroding or building. And predicting exactly what the ocean will give, and what it will take away, is a very new science – one that will get a major boost from what is now being learned during the Indonesian recovery. The research is being funded by the U.S. Geological Survey.

“Never before with modern scientific monitoring tools have we been able to so rigorously study a tsunami disaster such as this, literally on film from the moment it occurred to many years later,” Ruggiero said. “There have already been some surprises in places, where we’ve found the sand being moved and then re-distributed, and we’ll find out more as we go. But this process is nowhere near complete yet.”

On Dec. 26, 2004, a 9.2 magnitude earthquake triggered one of the deadliest natural disasters in modern world history, which included tsunami waves that reached up to 100 feet high. The waves scoured the ocean floor with their enormous energy and deposited huge amounts of sand and debris some distances inland, while other material was stripped away and washed out to sea. More than 225,000 people died in 11 countries.

“We have been able to study both the ocean floor and the inland effects, and are monitoring changes through time,” Ruggiero said. “We’ve discovered sandbars created by the tsunami in some shallow ocean waters that otherwise would not be there, and they appear to be gradually rebuilding some of the beaches.”

But receiving less attention at the time of the disaster, Ruggiero said, was the subsidence of some nearby areas by three to six feet – a result of land that had been “pushed up” by a subduction zone for centuries, only to drop back down suddenly during the earthquake. This resulted in an instant change of sea level over broad areas of coastal Indonesia that is still working itself out.

“As a result of the coastal subsidence, we’re still seeing beaches in retreat, which may continue for some time,” Ruggiero said. “Spits and inlets will form. We’re going to try to understand the forces at work and make predictions about where the ultimate shoreline will be, then come back in later years and see if we were right or not. We should learn a lot from this process.”

That knowledge, he said, may help scientists not only to better understand past tsunamis, but also to assist in recovery from those yet to occur. And one of the prime candidates for such an event is the Pacific Northwest coast of the United States and Canada, where the Cascadia Subduction Zone is nearly a geologic twin to its Indonesian counterpart. It’s believed that this zone has had several subduction zone earthquakes in the past 1,000 years, the last of which may have occurred in 1700.

“We’re already learning, just from what we’ve observed in Indonesia, that you must be very cautious what setbacks to allow for new construction and rebuilding after a major tsunami or land subsidence,” Ruggiero said. “Hopefully we’ll be able to develop computer models that will allow us to predict the final shape of the shorelines with more accuracy. And those shores may be dramatically different that the ones we now have.”

Advertisements

Posted in Geosciences | Leave a Comment »

Vitamin E trials not so much

Posted by The College of Science at OSU on January 18, 2008

Balz Frei, the Director of the Linus Pauling Institute (which will share the new science center with our chemistry faculty), and a member of the Department of Biochemistry and Biophysics, has this to add to the ongoing debate on the efficacy of Vitamin E:

http://www.functionalingredientsmag.com/fimag/articleDisplay.asp?strArticleId=1577&strSite=FFNSite

Posted in Biochemistry & Biophysics | Leave a Comment »

What to ants and juicy berries have in common, you ask?

Posted by The College of Science at OSU on January 18, 2008

Dr. George Poinar, Jr., a member of our Department of Zoology, has come out with this answer, circulating today. George is known as the world’s authority on the nematodes that parasitize insects.

http://www.berkeley.edu/news/media/releases/2008/01/16_ants.shtml

Our Department of Zoology was ranked sixth in the nation in the last report by the Chronicle of Higher Education.

Posted in Zoology | Leave a Comment »

Quantum Leaps in Physics

Posted by The College of Science at OSU on January 17, 2008

WenigerJordan_400 The Physics Department is celebrating it’s 100th anniversary this year. At right, a photo, taken sometime in 1928, of Professor Jordan (left), who built the first radio transmitter, KFDJ, 5 watts. Dr. Weniger (right) founded the department in 1908.

Also, chair and professor emeritus, Ken Krane, has been selected by the Honors College as 2008’s Eminent Professor.

In addition, the College of Science is pleased to announce the inception of the Ben and Elaine Whiteley Endowed Fund in Materials Research, recently established by long-time friends, donors, and volunteers, Ben and Elaine Whiteley. Elaine’s father was Dr. Edwin Yunker. Professor Yunker was a member of the OSU physics faculty from 1925 to 1968 and was department chair from 1949 to 1966. The Yunker lecture was established in his honor. Ben and Elaine live in Portland, and are delighted to have made this contribution in support of the materials science program, which has also been counted toward the challenge made by the Valley Foundation for the College of Science to raise $15 million in program support.

TatePLD

Dr. Janet Tate is one of the lead faculty members in the Materials Science group.

Finally, the Paradigms in Physics classroom remodel for first- and second-year students is on the way to becoming a reality.

That’s all for this nanosecond!

Posted in Philanthropy, Physics | Leave a Comment »

Seen around campus

Posted by The College of Science at OSU on January 17, 2008

JimCarrington_banner JaneLubchenco_banner AaronWolfe_banner DawnWright_banner

Posted in General News | Leave a Comment »

Revealing how life works at the molecular level

Posted by The College of Science at OSU on January 17, 2008

faculty

The Department of Biochemistry and Biophysics faculty (BB is fun!)
Below, Dr. Andy Karplus, new department chair.

Here are a few thoughts from Andy on the department, whose mission is Revealing How Life Works at the Molecular Level:

karplusMy name is Andy Karplus and my research specialty is protein crystallography—figuring out the three-dimensional structure of proteins and from those structures deciphering how they carry out their specific functions. My current projects include work on the enzyme causing Amyotrophic Lateral Sclerosis (Lou Gehrig’s Disease) and pursuing our “floodgate” hypothesis describing how one enzyme family helps regulate cell growth and development through controlling intracellular hydrogen peroxide levels. I received my PhD at the University of Washington in 1984, completed a four-year postdoc in Freiburg, Germany, and then was on the faculty at Cornell University for ten years before choosing to move my program to Oregon State in 1998.

The Department attracted me from Cornell in 1998, and from where I sit as the new chair, I can tell you this is an amazing time and place. As research into the molecular aspects of life becomes increasingly important to breakthroughs in human health, agriculture, environmental sciences, and even engineering and nanotechnology, so does the mission of our department. Our two-fold goals of educating students and carrying out forefront research in Biochemistry and Biophysics have never been more important to the success of Oregon, the nation, and the world.

Our students give friends and alumni much to be proud of:

  • Students in the Biochemistry and Biophysics (BB) major at OSU pursue one of the most challenging scientific programs in the College of Science. Spanning both the physical sciences (chemistry and physics) and the biological sciences (biology, genetics, and microbiology), the program provides our students with broad and yet rigorous training for careers in biomedicine.
  • As the number of students at OSU has grown from about 14,000 students to 18,000 in the past ten years, the number of BB majors has grown even faster, nearly doubling from about 70 majors to approximately 130 today.
  • BB majors are campus leaders and represent the best and brightest students in the state of Oregon. They enter OSU with average SAT scores that are 160 points above the University average, and compete with the very best in the nation.
  • From the years 2004-2006, five of the six Goldwater scholars in the entire Oregon University System were BB majors from OSU.
  • BB majors have also performed superbly in achieving their career goals. Each year, at least 50% graduate with the distinction of cum laude or higher, and of the last 37 BB majors to apply to medical school, 35 have been accepted, with the other two still in the application process.
  • In addition to the training of our BB majors, we educate over 1000 students per year in general biochemistry.

In other highlights, BB faculty maintain active research programs that brought in $2.5 million in external funding last year. Areas of focus include revealing the mechanisms that allow cells to move during wound healing, the relationships between oxidative stress and cancer, the structure and function of a motor protein that is required for cell division and development, the regulation of the production of the building blocks of DNA, and the biochemistry of chromatophores and camouflage. Our newest assistant professor, Michael Freitag, is revealing how chromosomes are recognized for proper cell division, and our research program has been greatly strengthened through the addition of Linus Pauling Institute faculty Balz Frei, Tory Hagen, and Joe Beckman with research programs focussing on micronutrients and health, aging, and neurodegenerative disease. Having faculty doing cutting-edge research and a vibrant PhD program strengthens our undergraduate program both because faculty are not just teaching from the textbooks but from the current advances, and because our undergraduates then can personally participate in research as part of their training.

Posted in Biochemistry & Biophysics | Leave a Comment »

Breaking the Tyranny of the Textbook

Posted by The College of Science at OSU on January 14, 2008

weniger Colorado
Here is the rabbit-warren to be renovated in Weniger Hall…and the cutting-edge classroom that will be created to carry out the “Paradigms In Physics” program for first-and second-year students in Physics at OSU.

Here’s a bit of background from Corinne Minogue and Dedra Demaree, the visionaries in charge:

The experience of being an upper-level undergraduate student in Physics at OSU has been transformed through a re-envisioning of the learning process. Our program, “Paradigms in Physics”, is funded by the National Science Foundation and is the first curriculum of its type in the country.

Originally it was conceived as a content rearrangement to teach physics as physicists think about it, in terms of concepts that broadly underlie many subfields: energy, symmetry, waves, and oscillations. The faculty have gone on, however, to recreate the entire learning environment by taking the active-engagement classroom practice to the cutting edge. The “Paradigms” vision has proven so successful, it is now serving as a model for other learning environments within OSU and beyond. This success may account for the increase in the number of physics majors and graduates at OSU over the past several years, at a time when the number of physics majors throughout the U.S. was showing a prolonged decline.To further invigorate the education of all students, the Department now seeks to retool the introductory sequence in line with the lessons learned from the Paradigms Project. The department will be shifting to presenting only the main ideas in the current large-lecture setting while having students spend more time in a smaller active-engagement classroom. Here they will be able to explore ideas seamlessly in small groups under the direction of a faculty member and experienced teaching assistants.

For example, they can start directly from physical observations and experimentation with equipment, move to problem solving for that situation, and then explore more difficult extensions through computer simulations. Students can work at a more flexible pace, and use interactions with each other and the instructors as ways to test and explore their own understanding. In dedicated, modernized classrooms with high-tech teaching aids, students will sit at modular tables with three students to a group. Students can face forward when information needs to be delivered to the class as a whole, but a quick move of chairs will transform the class into working groups. Each group will have a tablet PC for problem-solving, access to small equipment modules for testing ideas, and a white-board and a smart-board for brainstorming. Information will be uploaded to the instructor’s computer for real-time feedback on problem-solving. The group members will discuss amongst themselves, create models, physically test predictions based on their models, and present solutions to the entire class.

This active learning style has been proven to change thought patterns, excite strong students, and provide support for weaker students.

—-

We’re working on funding the $500,000 budget for this project via private support–we’re about $200k toward that goal so far.

Posted in Physics | Leave a Comment »

$77M for new Science Center

Posted by The College of Science at OSU on January 10, 2008

lpsc_270x230.jpgOregon State University has received $77 million in private and public commitments to construct the Linus Pauling Science Center and provide support for associated research and education programs.

The new facility, named for Linus Pauling, a 1922 OSU graduate and the only person to win two unshared Nobel Prizes, will house the Linus Pauling Institute and chemists from the College of Science. The facility will also contain classroom and laboratory space for undergraduates, graduate students, and researchers studying chemistry, biology, and life sciences.

”This investment will have a transformational impact on the sciences at Oregon State University,” said President Ed Ray. “It will advance health care research, spur the development of new discoveries and programs that will bolster our economy, and help educate the next generation of scientists, who will define the future of health care.”

Funding for the $62.5 million state-of-the-art building includes a $20 million commitment from the Wayne and Gladys Valley Foundation of Oakland, Calif., which was matched by gifts from other donors. These private commitments helped the university secure another $31.25 million in state bonds.

The Valley Foundation has also challenged OSU to raise at least $15 million in additional support for science research and education programs, including faculty positions and scholarships. To date more than $14 million has been committed from nearly 750 donors.

Approximately 120,000 square feet, the Linus Pauling Science Center will occupy the corner of Campus Way and 30th Street, next to existing science facilities.

—–

We are working with donors to offer naming opportunities in the new building for gifts designated for chemistry and life sciences. Naming can be acquired for a gift of $10,000 or more.

Posted in Chemistry, Linus Pauling Science Center | Leave a Comment »